
Convolutional neural 
network
11.11.2024



Outline

▪ Hour 1 
• Training neural nets continued: stochastic gradient descent 

• Introduction to convolutional neural networks (CNN) 

▪ Hour 2: CNN continued 
• Convolution as a linear map 
• Architecture of CNN

2



Example application of ML used in Génie mécanique
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Prof. Colin Jones: Predictive Control Lab

Prof. Pioletti: Laboratory of Biomechanical Orthopedics (LBO)



Titre de diapositive
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Ø 1000 virtual subjects from a musculoskeletal model (MSM) 
Ø Monte-Carlo simulation for parameter selection
Ø Parameters (features): 

Ø Sex, weight, height, activities of daily living, Glenoid version, glenoid inclination, cross sectional area of rotator cuff muscles
Ø Target: GH joint force 

Glenohumeral (GH) joint force prediction with a deep learning model (DLM)

Pezhman Eghbali, Laboratory of Biomechanical Orthopedics (LBO), EPFL, 2022
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Ehsan Sarshari et al., Sci. Rep., 20806 (2021)

DLMMSM
Performance of DLM: 

Mean absolute error of 3.6 (N) on the test data

Ø DLM prediction more than 1000 time faster than MSM
Ø DLM easier to integrate with (finite element) patient-specific models

Prof. Pioletti: Laboratory of Biomechanical Orthopedics (LBO)



Last time

“3-layer Neural Net”, or 
“2-hidden-layer Neural Net”

Additional resource: https://www.deeplearningbook.org/
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Training for NN 

A. Amini et al. Spatial Uncertainty Sampling for 
End-to-End Control, 2019

Goal of optimization in ML: 

Minimize cost over training data: =
 of the -th training example  

Want the optimization to: 
• Converge quickly 
• Find a good local minima (or even global 

minima) 

Gradient descent (and variants) is the preferred way to 
optimize neural networks 

∑N
i=1 L(i)

L(y(i), ̂y(i)) i

ji = f(xi)
②

min L(y) , vyil)
& O



Training a neural network

Loop: 
1. Forward pass to evaluate the the loss function on each data point 
2. Backward pass to calculate gradient: backpropogation as shown with a simple 

example (see Section 5.2 inML4Engineers book.) 
3. Update parameters using the gradient 

▪ Forward pass computes result of an operation and save any intermediates needed for gradient computation 
in memory 

▪ Backward pass applies the chain rule to compute the gradient of the loss function with respect to the inputs: 
we did an example in class last time 

Challenge: gradient computation is slow and memory consuming 



Stochastic gradient descent
Training data: 

Loss (cost) 

Gradient of loss 

Standard gradient descent 

Stochastic gradient descent 
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Mini-batch stochastic gradient descent
Training data: 

Divide into batches of size 

Example 

Mini-batch stochastic gradient descent 

Epoch: 

N

< xi , y
:

: = 1

N N
b

·
If N = 500

, Ny = 20
,

we'll have 30 batches

ni

0 0
.
-4 cy-y)2 .

where ni fai = 1
,2 . .... Ny

+ + 1

Nb i = 108

corresponds to the indices of thecata point in the butch.

# of iterations required to upclate parameters that let you

go through the data set
~ example : 30 Iterates in an epoch



Gradient descent variants
Gradient descent (GD): 

▪  

▪ Weights updated after calculating the gradient over the entire dataset 

• slow 

• requires large memory

J = 1
N ∑N

i=1 L(i)

Stochastic gradient descent (SGD): 

▪   

▪ Weights updated after calculating the gradient of a single example 

• requires much less memory than GD 

• high variance in parameter updates

J = L(i)

Mini-batch Gradient descent 

▪  

▪ Weights updated after calculating the gradient over the entire dataset 

• Faster than SGD 

• Reduces variance of gradient estimation

J = 1
Nb

∑Nb
i=1 L(i)

weights &biases
-



Problems with training
Loss function non-convex 

Choice of initialisation  
Choice of learning rate 
Affect the local minimum found 

Variants of gradient descent are commonly used in 
practice to speed-up and improve convergence:  

▪ Momentum update 
▪ Nesterov Accelerated Gradient (NAG) 
▪ Adam 
▪ and more…
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Deep learning frameworks
Overview

Deep learning frameworks are used to efficiently define and train neural networks 
• Support for many types of layers, activations, loss functions, optimizers, … 
• Backpropagation computed automatically (e.g. loss.backward() in PyTorch) 
• GPU support for faster training 

Most popular frameworks today: 
• PyTorch (https://pytorch.org) 
• TensorFlow (https://www.tensorflow.org/)



Deep learning frameworks
Implementing a simple neural network in PyTorch



Last week, Python exercise 1 - digit classification

▪ You created a neural network for hand-written digit classification 
▪ Training data is based on MNIST dataset: 70,000 images containing hand-written digits 
▪ How does the classifier “see” an image? What are the features given to the classifier?  

• What does it mean to flatten an image?  
• How many parameters needed to be determined in training? 

consider first layer :

input size 784
784
x IR

suppose we have

10 neurons in

first layer
How

many parameters
far first layer we
have ?
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Python exercise 2 - fault detection in electric lines

▪ Datasets: Electrical Faults & Dielectric Breakdown
▪ Goals: 

• Detect and classify faults in transmission lines
• Predict the dielectric breakdown of insulators

Note: the only difference between two exercises are the datasets



Reflection

• Neural networks are powerful but 

▪ Computation is intense 
• A lot of time and resources (GPU, etc). Can everyone have equal access to these resources? 
• You might need to use Google Colab or other platforms managed by companies. Are there any data privacy issues? 

▪ Training neural networks is ENERGY consuming

▪ The predictor might not have interpretability



Convolutional Neural Networks



Motivation: real-World Problem
Detecting and Classifying Pavement Distress

!!!!!!

Why? On-time  preventive  maintenance

Lack of on-time maintenance
• x3 the maintenance cost 
• traffic delay
• more fuel consumption
• accidents
• …



Motivations (you will do this in your exercise this week)

▪ Datasets: EuroSAT (images taken by Sentinel-2 satellite)
▪ Goal: Classify land cover of pictures taken by Sentinel-2



Convolutional Neural Network dataset 2
▪ Comparison: NN versus CNN in terms of number of parameters and accuracy
▪ What is the difference between the dimension of the input given to the NN versus CNN? 



Convolutional Neural Networks (CNN)
Intro - Handling images with fully-connected NN

Flatten

3x32x32 image
3072x1 input

height (32)

width (32)

depth (3) 

 for the 3 color channels: R, G, B→

By flattening, spatial structure gets lost!



Convolutional Neural Networks
Intro - Handling images with fully-connected NN

A fully-connected neural net: 
▪ Requires flattening the image 

 spatial structure gets lost 

▪ Doesn’t scale well to large images 
• e.g. 1024x1024x3 image results in 

3’145’728 weights for each neuron of first 
hidden layer 

→

How to efficiently model correlation between neighboring pixels? 
=> Convolutional Neural Networks

Flatten



Convolution definition
Convolution of a signal with a filter (note: a filter is also referred to as kernel in ML) 

Signal 
Filter 
Convolution outcome

IC
E IR

2m + 1

(Kerne17 wEIR
M

d

Z EIR , zi = Ewjx + j ,
i = m ..., d - m

example : j =
-m

x - 18
,

1
,

1
,
2

, 3
,

5
,
8 , 13) EIR3

-
w = 1 2

,
1) IR3 m = 1

Z
4

= 1x1 + - 2x2 + 1x 3 = f

Z -
3

2 S -

How do we compute 2 . & Ez ?



Convolution - what to do at boundaries
1) zero. padding : C = 18 , 0 , 1
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Convolution to get features
Filters can approximate what happens in neighborhood with a few numbers: 

give average value of signal in a neighborhood 

sharpen the signal  

blur the signal 

approximate derivative of a signal in a neighborhood: 

approximate second derivative of a signal in a neighborhood 
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Convolution extension
Continuous signals (functions)  

Matrices: 
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Example of image convolution

-1 -1 -1

-1 8 -1

-1 -1 -1

https://muthu.co/basics-of-image-convolution/

filter/kernel



Convolutional
2D Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -3

-1 0 2

To show how the convolution operation is computed, let’s use a simpler example:  
5x5 input, 3x3 filter

Input (5x5) Filter (3x3)

Bias:  = 0b



Convolutional
Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

2

1x1 + 0x(-1) + 3x0 + 0x0 + 3x2 + 
4x(-2) + 1x(-1) + 0x0 + 2x2 + 0 

= 2

⋅ =
1 -1 0

0 2 -2

-1 0 2

Bias:  = 0b



Convolutional
Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

2 5

0x1 + 3x(-1) + 0x0 + 3x0 + 4x2 + 
0x(-2) + 0x(-1) + 2x0 + 0x2 + 0   

= 5

Bias:  = 0b

⋅ =



Convolutional
Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

2 5 -1

3x1 + 0x(-1) + 2x0 + 4x0 + 0x2 + 
2x(-2) + 2x(-1) + 0x0 + 1x2 + 0   

= -1

Bias:  = 0b

⋅ =



Convolutional
Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

0x1 + 3x(-1) + 4x0 + 1x0 + 0x2 + 
2x(-2) + 8x(-1) + 12x0 + 0x2 + 0  

= -15

2 5 -1

-15

Bias:  = 0b

⋅ =



Convolutional
Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

3x1 + 4x(-1) + 0x0 + 0x0 + 2x2 + 
0x(-2) + 12x(-1) + 0x0 + 1x2 + 0 

= -7

2 5 -1

-15 -7

Bias:  = 0b

⋅ =



Convolutional
Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

4x1 + 0x(-1) + 2x0 + 2x0 + 0x2 + 
1x(-2) + 0x(-1) + 1x0 + 0x2 + 0 

= 2

2 5 -1

-15 -7 2

Bias:  = 0b

⋅ =



Convolutional
Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

1x1 + 0x(-1) + 2x0 + 8x0 + 12x2 
+ 0x(-2) + 0x(-1) + 6x0 + 3x2 + 0  

= 31

2 5 -1

-15 -7 2

31

Bias:  = 0b

⋅ =



Convolutional
Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

0x1 + 2x(-1) + 0x0 + 12x0 + 0x2 + 
1x(-2) + 6x(-1) + 3x0 + 2x2 + 0 

= -8

2 5 -1

-15 -7 2

31 -8

Bias:  = 0b

⋅ =



Convolutional Neural Networks
Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

2x1 + 0x(-1) + 1x0 + 0x0 + 1x2 + 
0x(-2) + 3x(-1) + 2x0 + 0x2 + 0 

= 1

2 5 -1

-15 -7 2

31 -8 1

Bias:  = 0b

⋅ =



Convolution example

Example from ML4Engineers book.  

Filter based on finite approximation of 
Laplacian operator:

Do

-[iii



Convolutional Neural Networks (CNN)
Convolution Layer

3x32x32 image

height (32)

width (32)

depth (3)

In PyTorch, images are represented as 
(CxHxW) 

• C: number of channels (depth) 

• H: height 

• W: width 

A pixel can be represented by a vector of 3 color (R, G, B) 
intensities  
I(c, h, w)  

colors : real , green , blue

16 with
colors ought



Convolutional Neural Networks
Convolution Layer

32

32

3

3x5x5 filter

3x32x32 image

Convolve the filter with the image 
i.e. “slide over the image spatially, 

computing dot products”

Filters always extend the full 
depth of the input volume

Note:  
Filters are sometimes referred to as kernels



Convolutional Neural Networks
Convolution Layer

3x5x5 filter ( )w

32

32

3

3x32x32 image

1 number:  
▪ The result of taking a dot product between the 

filter and a small 3x5x5 chunk of the image 

• (i.e. 5x5x3=75-dimensional dot product + bias) 



Convolutional Neural Networks
Convolution Layer

3x5x5 filter ( )w

32

32

3

3x32x32 image

Convolve (slide) over all 
spatial locations

1

28

28

activation map



Convolutional Neural Networks
Convolution Layer

Convolve (slide) over all 
spatial locations

1

28

28

activation map

32

32

3

3x32x32 image



Convolutional Neural Networks
Convolution Layer

Convolve (slide) over all 
spatial locations

1

28

28

activation map

32

32

3

3x32x32 image



Convolutional Neural Networks
Convolution Layer

Convolve (slide) over all 
spatial locations

1

28

28

activation map

32

32

3

3x32x32 image



Convolutional Neural Networks
Convolution Layer

Convolve (slide) over all 
spatial locations

1

28

28

activation map

32

32

3

3x32x32 image



Convolutional Neural Networks
Convolution Layer

Convolve (slide) over all 
spatial locations

1

28

28

activation map

32

32

3

3x32x32 image



Convolutional Neural Networks
Convolution Layer

Convolve (slide) over all 
spatial locations

1

28

28

activation map

32

32

3

3x32x32 image



Convolutional Neural Networks
Convolution Layer

1

28

28

activation maps

32

32

3

3x5x5 filter

Consider a second filter 
Perform same convolution operation with  
this filter to get a second activation map

3x32x32 image

convoluter : linear operaten ,
achvaten

functen
->

nonlinearly



Pooling
Applying a function in a non-overlapping way to a signal 

Need to determine the type of function and the ‘stride’ 

Example:  

 
average-pooling of stride 4 

max-pooling of stride 4 

x = 10
,

1
,
1
,
2
,
3
,
5, 8 , 13)

&

&

2 (arg(X ,. 1) , arg)
: el) = (1 , 7 .

25) EIR
>

2

2 = (max (X
,. +) ,

max (Ys .g)) = (2 , 13) EIR



Pooling example

Max-pooling, stride of 2 

3 0 1 0 2 4

0 1 8 12 0 0

4 0 0 3 2 2

2 0 1 0 1 1

3 2 0 6 0 5

1 0 6 0 0 9

Input (1x6x6) Output (1x3x3)

3 12 4

4 3 2

3 6 9



Pooling example

Example from ML4Engineers book.  

Max-pooling of stride 9 applied to (a)



CNNs may include pooling layers to reduce the spatial size of the representation 

Pooling layers require two hyper-parameters: their spatial extent  and their stride  

▪ Most common layer uses 2x2 filters of stride 2 ( ) 

F S
F = 2, S = 2

Convolutional Neural Networks
Pooling layer

& &



Convolutional applied with a stride

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -3

-1 0 2

Input (1x5x5) Filter (1x3x3)

Bias:  = 0b

We can also apply convolution with a stride of 2 



Convolutional Neural Networks
Changing the stride

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

Input (1x5x5) Filter (1x3x3)

2

Output (1x2x2)

1x1 + 0x(-1) + 3x0 + 0x0 + 3x2 + 
4x(-2) + 1x(-1) + 0x0 + 2x2 + 0  

= 2

Bias:  = 0b

⋅ =

Back to our simple example, but change to stride of 2 



Convolutional Neural Networks
Changing the stride

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

Input (1x5x5) Filter (1x3x3)

3x1 + 0x(-1) + 2x0 + 4x0 + 0x2 + 
2x(-2) + 2x(-1) + 0x0 + 1x2 + 0 

= -1

2 -1

Output (1x2x2)

Bias:  = 0b

⋅ =

Back to our simple example, but change to stride of 2 



Convolutional Neural Networks
Changing the stride

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

Input (1x5x5) Filter (1x3x3)

1x1 + 0x(-1) + 2x0 + 8x0 + 12x2 
+ 0x(-2) + 0x(-1) + 6x0 + 3x2 + 0 

= 31

2 -1

31

Output (1x2x2)

Bias:  = 0b

⋅ =

Back to our simple example, but change to stride of 2 



Convolutional Neural Networks
Changing the stride

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

Input (1x5x5) Filter (1x3x3)

2x1 + 0x(-1) + 1x0 + 0x0 + 1x2 + 
0x(-2) + 3x(-1) + 2x0 + 0x2 + 0   

= 1

2 -1

31 1

Output (1x2x2)

Bias:  = 0b

⋅ =

Back to our simple example, but change to stride of 2 



Convolutional Neural Networks
Zero-padding

Height and width shrink quite quickly due to the repeated convolutions 
To avoid this, we can add zero-padding: 

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

Input (1x5x5) 0 0 0 0 0 0 0

0 1 0 3 0 2 0

0 0 3 4 0 2 0

0 1 0 2 0 1 0

0 8 12 0 1 0 0

0 0 6 3 2 0 0

0 0 0 0 0 0 0

Zero-padded input (1x7x7)

Zero-padding = 1

If we use a 3x3 filter with a stride of 1 on the padded input, we get a 5x5 output  

 same size as input→



Convolutional Neural Networks
Convolution layer summary

The convolution layer: 

▪ Accepts a volume of size  

▪ Requires four hyper-parameters: 

• Number of filters  

• Spatial extent of filters  

• Stride  

• Amount of zero padding  

▪ Produces of a volume of size  where: 

•  

•  

•

Cin × H1 × W1

K
F

S
P

Cout × H2 × W2

Cout = K
H2 = (H1 − F + 2P)/S + 1
W2 = (W1 − F + 2P)/S + 1



Convolutional Neural Networks
Convolution layer summary

Note: 

There are   weights per filter, 

for a total of  weights 

and  biases per layer

F ⋅ F ⋅ Cin
(F ⋅ F ⋅ Cin) ⋅ K

K

The convolution layer: 

▪ Accepts a volume of size  

▪ Requires four hyper-parameters: 

• Number of filters  

• Spatial extent of filters  

• Stride   

• Amount of zero (repetition) padding  

▪ Produces of a volume of size  where: 

•  

•  

•

Cin × H1 × W1

K
F

S
P

Cout × H2 × W2

Cout = K
H2 = (H1 − F + 2P)/S + 1
W2 = (W1 − F + 2P)/S + 1



Convolutional neural net

From: Machine Learning for Engineers book

Usually the architecture is fixed for a given problem (object classification)  based on trial and error 
examples: LeNet-5, LeCun et al. ,1998, AlexNet Krizhevsky et al., 2012,  GoogLeNet (Inception v1), etc. 

It can be applied to transfer learning to a new problem



Python exercises this week

▪ You will apply CNN to two datasets 
• Dataset 1: from last week, digit recognition
• Dataset 2: satellite images classification (bonus)



Summary

Neural networks: nonlinear function approximations (predictors) 
Structure: compositions of linear functions and nonlinear activation function ->  

Strong function approximation property 
Gradient computation 

Convolutional neural networks: can help keeping spatial/temporal structure 
Image or audio processing 

Disadvantages:  
Highly non-convex loss functions  
Energy and time for training 
Interpretability 



Additional reading (optional): transfer learning

Train network for a task 
Example: image classification 
Requires large number of training data, and training resources 

Modify the trained network for a different task (transfer learning) 
Why? Can address limited data and time/resources for training 

Case study 6.5 from Machine Learning for Engineers book: “Finding volcanos on 
Venus with pre-fit models” 



68Introduction Logistic regression Linear regression 

KNN 

Clustering 

Neural networks 

Convolutional neural 
networks 

Naive Bayes

Decision-trees  Dimensionality reduction 

Reinforcement learning  AI ethics


