
Convolutional neural
network
11.11.2024

Outline

▪ Hour 1
• Training neural nets continued: stochastic gradient descent

• Introduction to convolutional neural networks (CNN)

▪ Hour 2: CNN continued
• Convolution as a linear map
• Architecture of CNN

2

Example application of ML used in Génie mécanique

3

Prof. Colin Jones: Predictive Control Lab

Prof. Pioletti: Laboratory of Biomechanical Orthopedics (LBO)

Titre de diapositive

4

Ø 1000 virtual subjects from a musculoskeletal model (MSM)
Ø Monte-Carlo simulation for parameter selection
Ø Parameters (features):

Ø Sex, weight, height, activities of daily living, Glenoid version, glenoid inclination, cross sectional area of rotator cuff muscles
Ø Target: GH joint force

Glenohumeral (GH) joint force prediction with a deep learning model (DLM)

Pezhman Eghbali, Laboratory of Biomechanical Orthopedics (LBO), EPFL, 2022

!
!"

#ℒ
#&̇ − #ℒ#& =

#Ω
#&̇ * + ,!"

Φ!"
#& + ,#$

Φ#$
#&

Ehsan Sarshari et al., Sci. Rep., 20806 (2021)

DLMMSM
Performance of DLM:

Mean absolute error of 3.6 (N) on the test data

Ø DLM prediction more than 1000 time faster than MSM
Ø DLM easier to integrate with (finite element) patient-specific models

Prof. Pioletti: Laboratory of Biomechanical Orthopedics (LBO)

Last time

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

Additional resource: https://www.deeplearningbook.org/

(xi
, yih traing data

we use data to learn
a

~eulineer predlichen

f : x + f(x)
O O

parameters O : Weights &

brases of each layer
of the neural network

Training for NN

A. Amini et al. Spatial Uncertainty Sampling for
End-to-End Control, 2019

Goal of optimization in ML:

Minimize cost over training data: =
 of the -th training example

Want the optimization to:
• Converge quickly
• Find a good local minima (or even global

minima)

Gradient descent (and variants) is the preferred way to
optimize neural networks

∑N
i=1 L(i)

L(y(i), ̂y(i)) i

ji = f(xi)
②

min L(y) , vyil)
& O

Training a neural network

Loop:
1. Forward pass to evaluate the the loss function on each data point
2. Backward pass to calculate gradient: backpropogation as shown with a simple

example (see Section 5.2 inML4Engineers book.)
3. Update parameters using the gradient

▪ Forward pass computes result of an operation and save any intermediates needed for gradient computation
in memory

▪ Backward pass applies the chain rule to compute the gradient of the loss function with respect to the inputs:
we did an example in class last time

Challenge: gradient computation is slow and memory consuming

Stochastic gradient descent
Training data:

Loss (cost)

Gradient of loss

Standard gradient descent

Stochastic gradient descent

N

(xi
, y
:

li
=, S

L(0) &: set of all W(weighte) & b (blases)

- ji-yizz ji = fo(xi)

&
= + (ji - yi) I by linearity of differentation)

00 Ni =100

N

I i

0 = 0 -

x
& & (yi- yS2 , & : learing rate

+ + t
N i = 100

ni

-

C uniformly
↑

-

0 = 0- &
- ,

1 ni
n 13 a sample from 11 , 2, ..., N)

f +1
t -or M i-ni

ni mi I Z e

Ee T 2 C p(ey - i = 1

Mini-batch stochastic gradient descent
Training data:

Divide into batches of size

Example

Mini-batch stochastic gradient descent

Epoch:

N

< xi , y
:

: = 1

N N
b

·
If N = 500

, Ny = 20
,

we'll have 30 batches

ni

0 0
.
-4 cy-y)2 .

where ni fai = 1
,2 Ny

+ + 1

Nb i = 108

corresponds to the indices of thecata point in the butch.

of iterations required to upclate parameters that let you

go through the data set
~ example : 30 Iterates in an epoch

Gradient descent variants
Gradient descent (GD):

▪

▪ Weights updated after calculating the gradient over the entire dataset

• slow

• requires large memory

J = 1
N ∑N

i=1 L(i)

Stochastic gradient descent (SGD):

▪

▪ Weights updated after calculating the gradient of a single example

• requires much less memory than GD

• high variance in parameter updates

J = L(i)

Mini-batch Gradient descent

▪

▪ Weights updated after calculating the gradient over the entire dataset

• Faster than SGD

• Reduces variance of gradient estimation

J = 1
Nb

∑Nb
i=1 L(i)

weights &biases
-

Problems with training
Loss function non-convex

Choice of initialisation
Choice of learning rate
Affect the local minimum found

Variants of gradient descent are commonly used in
practice to speed-up and improve convergence:

▪ Momentum update
▪ Nesterov Accelerated Gradient (NAG)
▪ Adam
▪ and more…

Oo & instal weighte & based

2
+

+ = 0, T

Deep learning frameworks
Overview

Deep learning frameworks are used to efficiently define and train neural networks
• Support for many types of layers, activations, loss functions, optimizers, …
• Backpropagation computed automatically (e.g. loss.backward() in PyTorch)
• GPU support for faster training

Most popular frameworks today:
• PyTorch (https://pytorch.org)
• TensorFlow (https://www.tensorflow.org/)

Deep learning frameworks
Implementing a simple neural network in PyTorch

Last week, Python exercise 1 - digit classification

▪ You created a neural network for hand-written digit classification
▪ Training data is based on MNIST dataset: 70,000 images containing hand-written digits
▪ How does the classifier “see” an image? What are the features given to the classifier?

• What does it mean to flatten an image?
• How many parameters needed to be determined in training?

consider first layer :

input size 784
784
x IR

suppose we have

10 neurons in

first layer
How

many parameters
far first layer we
have ?

↑

787
I

< Co , 1) ,
(789 = 28x20)

789D wit IR
,
i = ,

, ..., 10 ,

bi eIr'o

S

F

D
in coming

to neuron 1

T

S

S

I↑ &
wi x + b ,

EIR

S

/
out from neuron

g(wix + b ,) fIR

7891
W D achvaten funsten

7848 laye . 7

Python exercise 2 - fault detection in electric lines

▪ Datasets: Electrical Faults & Dielectric Breakdown
▪ Goals:

• Detect and classify faults in transmission lines
• Predict the dielectric breakdown of insulators

Note: the only difference between two exercises are the datasets

Reflection

• Neural networks are powerful but

▪ Computation is intense
• A lot of time and resources (GPU, etc). Can everyone have equal access to these resources?
• You might need to use Google Colab or other platforms managed by companies. Are there any data privacy issues?

▪ Training neural networks is ENERGY consuming

▪ The predictor might not have interpretability

Convolutional Neural Networks

Motivation: real-World Problem
Detecting and Classifying Pavement Distress

!!!!!!

Why? On-time preventive maintenance

Lack of on-time maintenance
• x3 the maintenance cost
• traffic delay
• more fuel consumption
• accidents
• …

Motivations (you will do this in your exercise this week)

▪ Datasets: EuroSAT (images taken by Sentinel-2 satellite)
▪ Goal: Classify land cover of pictures taken by Sentinel-2

Convolutional Neural Network dataset 2
▪ Comparison: NN versus CNN in terms of number of parameters and accuracy
▪ What is the difference between the dimension of the input given to the NN versus CNN?

Convolutional Neural Networks (CNN)
Intro - Handling images with fully-connected NN

Flatten

3x32x32 image
3072x1 input

height (32)

width (32)

depth (3)

 for the 3 color channels: R, G, B→

By flattening, spatial structure gets lost!

Convolutional Neural Networks
Intro - Handling images with fully-connected NN

A fully-connected neural net:
▪ Requires flattening the image

 spatial structure gets lost

▪ Doesn’t scale well to large images
• e.g. 1024x1024x3 image results in

3’145’728 weights for each neuron of first
hidden layer

→

How to efficiently model correlation between neighboring pixels?
=> Convolutional Neural Networks

Flatten

Convolution definition
Convolution of a signal with a filter (note: a filter is also referred to as kernel in ML)

Signal
Filter
Convolution outcome

IC
E IR

2m + 1

(Kerne17 wEIR
M

d

Z EIR , zi = Ewjx + j ,
i = m ..., d - m

example : j =
-m

x - 18
,

1
,

1
,
2

, 3
,

5
,
8 , 13) EIR3

-
w = 1 2

,
1) IR3 m = 1

Z
4

= 1x1 + - 2x2 + 1x 3 = f

Z -
3

2 S -

How do we compute 2 . & Ez ?

Convolution - what to do at boundaries
1) zero. padding : C = 18 , 0 , 1

,
1
,
2 , 3

,
5
,
8
,
13
, 0) , w = (1 , 2

, 1)

2z =...

" EIR
Z

da
now

2 = (x8 + 2x8 + 1 x 1

·

j2) repehlen =- (D , 0 , 1
,

1
,
2
,
3
,
5
,
2
,
13
, 13) 3

2 = (xb + - 2x8 + 1x7
8

22 =
.... [i]

d - 2m
3)
Ignore boundaries & return 2 IR

d- 2
s

ex = zt IR = IR

Convolution to get features
Filters can approximate what happens in neighborhood with a few numbers:

give average value of signal in a neighborhood

sharpen the signal

blur the signal

approximate derivative of a signal in a neighborhood:

approximate second derivative of a signal in a neighborhood

w:) , z . = Xi+ XitI

3

w = (- 1
, 4

,
- 1) , zi = - Xi - +

4xi + - xix)
- You O

w = /e
S 2 , e

021 , o is a choice

w = (+ , 0, 1)/2 2; =
X

it

2

w = (1 , - 2 , 1) , zi = Xi +
- 2xi + Xi + /

w = 1- , 5 1"s')

w = 1 - 1
, 4 ,

- 17

- 482 -Yo
Y

Yo
Yow = (e

,
e8e ,

e
&

w = (1
,
0 , 1)

w = (1
,
- 2
, 1)

Convolution extension
Continuous signals (functions)

Matrices:

: R-IR
,
W : IR -IR ,

eCuE IR
, WIHE IR N

z(t) = xBW > ! x(+)w(+ - t)d[2(+)EIR

a
2 : IR-IR

d, xdz
m

, xm2

MERR W EIR

Ms W

Example of image convolution

-1 -1 -1

-1 8 -1

-1 -1 -1

https://muthu.co/basics-of-image-convolution/

filter/kernel

Convolutional
2D Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -3

-1 0 2

To show how the convolution operation is computed, let’s use a simpler example:
5x5 input, 3x3 filter

Input (5x5) Filter (3x3)

Bias: = 0b

Convolutional
Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

2

1x1 + 0x(-1) + 3x0 + 0x0 + 3x2 +
4x(-2) + 1x(-1) + 0x0 + 2x2 + 0

= 2

⋅ =
1 -1 0

0 2 -2

-1 0 2

Bias: = 0b

Convolutional
Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

2 5

0x1 + 3x(-1) + 0x0 + 3x0 + 4x2 +
0x(-2) + 0x(-1) + 2x0 + 0x2 + 0

= 5

Bias: = 0b

⋅ =

Convolutional
Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

2 5 -1

3x1 + 0x(-1) + 2x0 + 4x0 + 0x2 +
2x(-2) + 2x(-1) + 0x0 + 1x2 + 0

= -1

Bias: = 0b

⋅ =

Convolutional
Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

0x1 + 3x(-1) + 4x0 + 1x0 + 0x2 +
2x(-2) + 8x(-1) + 12x0 + 0x2 + 0

= -15

2 5 -1

-15

Bias: = 0b

⋅ =

Convolutional
Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

3x1 + 4x(-1) + 0x0 + 0x0 + 2x2 +
0x(-2) + 12x(-1) + 0x0 + 1x2 + 0

= -7

2 5 -1

-15 -7

Bias: = 0b

⋅ =

Convolutional
Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

4x1 + 0x(-1) + 2x0 + 2x0 + 0x2 +
1x(-2) + 0x(-1) + 1x0 + 0x2 + 0

= 2

2 5 -1

-15 -7 2

Bias: = 0b

⋅ =

Convolutional
Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

1x1 + 0x(-1) + 2x0 + 8x0 + 12x2
+ 0x(-2) + 0x(-1) + 6x0 + 3x2 + 0

= 31

2 5 -1

-15 -7 2

31

Bias: = 0b

⋅ =

Convolutional
Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

0x1 + 2x(-1) + 0x0 + 12x0 + 0x2 +
1x(-2) + 6x(-1) + 3x0 + 2x2 + 0

= -8

2 5 -1

-15 -7 2

31 -8

Bias: = 0b

⋅ =

Convolutional Neural Networks
Convolution computation example

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

2x1 + 0x(-1) + 1x0 + 0x0 + 1x2 +
0x(-2) + 3x(-1) + 2x0 + 0x2 + 0

= 1

2 5 -1

-15 -7 2

31 -8 1

Bias: = 0b

⋅ =

Convolution example

Example from ML4Engineers book.

Filter based on finite approximation of
Laplacian operator:

Do

-[iii

Convolutional Neural Networks (CNN)
Convolution Layer

3x32x32 image

height (32)

width (32)

depth (3)

In PyTorch, images are represented as
(CxHxW)

• C: number of channels (depth)

• H: height

• W: width

A pixel can be represented by a vector of 3 color (R, G, B)
intensities
I(c, h, w)

colors : real , green , blue

16 with
colors ought

Convolutional Neural Networks
Convolution Layer

32

32

3

3x5x5 filter

3x32x32 image

Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

Filters always extend the full
depth of the input volume

Note:
Filters are sometimes referred to as kernels

Convolutional Neural Networks
Convolution Layer

3x5x5 filter ()w

32

32

3

3x32x32 image

1 number:
▪ The result of taking a dot product between the

filter and a small 3x5x5 chunk of the image

• (i.e. 5x5x3=75-dimensional dot product + bias)

Convolutional Neural Networks
Convolution Layer

3x5x5 filter ()w

32

32

3

3x32x32 image

Convolve (slide) over all
spatial locations

1

28

28

activation map

Convolutional Neural Networks
Convolution Layer

Convolve (slide) over all
spatial locations

1

28

28

activation map

32

32

3

3x32x32 image

Convolutional Neural Networks
Convolution Layer

Convolve (slide) over all
spatial locations

1

28

28

activation map

32

32

3

3x32x32 image

Convolutional Neural Networks
Convolution Layer

Convolve (slide) over all
spatial locations

1

28

28

activation map

32

32

3

3x32x32 image

Convolutional Neural Networks
Convolution Layer

Convolve (slide) over all
spatial locations

1

28

28

activation map

32

32

3

3x32x32 image

Convolutional Neural Networks
Convolution Layer

Convolve (slide) over all
spatial locations

1

28

28

activation map

32

32

3

3x32x32 image

Convolutional Neural Networks
Convolution Layer

Convolve (slide) over all
spatial locations

1

28

28

activation map

32

32

3

3x32x32 image

Convolutional Neural Networks
Convolution Layer

1

28

28

activation maps

32

32

3

3x5x5 filter

Consider a second filter
Perform same convolution operation with
this filter to get a second activation map

3x32x32 image

convoluter : linear operaten ,
achvaten

functen
->

nonlinearly

Pooling
Applying a function in a non-overlapping way to a signal

Need to determine the type of function and the ‘stride’

Example:

average-pooling of stride 4

max-pooling of stride 4

x = 10
,

1
,
1
,
2
,
3
,
5, 8 , 13)

&

&

2 (arg(X ,. 1) , arg)
: el) = (1 , 7 .

25) EIR
>

2

2 = (max (X
,. +) ,

max (Ys .g)) = (2 , 13) EIR

Pooling example

Max-pooling, stride of 2

3 0 1 0 2 4

0 1 8 12 0 0

4 0 0 3 2 2

2 0 1 0 1 1

3 2 0 6 0 5

1 0 6 0 0 9

Input (1x6x6) Output (1x3x3)

3 12 4

4 3 2

3 6 9

Pooling example

Example from ML4Engineers book.

Max-pooling of stride 9 applied to (a)

CNNs may include pooling layers to reduce the spatial size of the representation

Pooling layers require two hyper-parameters: their spatial extent and their stride

▪ Most common layer uses 2x2 filters of stride 2 ()

F S
F = 2, S = 2

Convolutional Neural Networks
Pooling layer

& &

Convolutional applied with a stride

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -3

-1 0 2

Input (1x5x5) Filter (1x3x3)

Bias: = 0b

We can also apply convolution with a stride of 2

Convolutional Neural Networks
Changing the stride

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

Input (1x5x5) Filter (1x3x3)

2

Output (1x2x2)

1x1 + 0x(-1) + 3x0 + 0x0 + 3x2 +
4x(-2) + 1x(-1) + 0x0 + 2x2 + 0

= 2

Bias: = 0b

⋅ =

Back to our simple example, but change to stride of 2

Convolutional Neural Networks
Changing the stride

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

Input (1x5x5) Filter (1x3x3)

3x1 + 0x(-1) + 2x0 + 4x0 + 0x2 +
2x(-2) + 2x(-1) + 0x0 + 1x2 + 0

= -1

2 -1

Output (1x2x2)

Bias: = 0b

⋅ =

Back to our simple example, but change to stride of 2

Convolutional Neural Networks
Changing the stride

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

Input (1x5x5) Filter (1x3x3)

1x1 + 0x(-1) + 2x0 + 8x0 + 12x2
+ 0x(-2) + 0x(-1) + 6x0 + 3x2 + 0

= 31

2 -1

31

Output (1x2x2)

Bias: = 0b

⋅ =

Back to our simple example, but change to stride of 2

Convolutional Neural Networks
Changing the stride

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

1 -1 0

0 2 -2

-1 0 2

Input (1x5x5) Filter (1x3x3)

2x1 + 0x(-1) + 1x0 + 0x0 + 1x2 +
0x(-2) + 3x(-1) + 2x0 + 0x2 + 0

= 1

2 -1

31 1

Output (1x2x2)

Bias: = 0b

⋅ =

Back to our simple example, but change to stride of 2

Convolutional Neural Networks
Zero-padding

Height and width shrink quite quickly due to the repeated convolutions
To avoid this, we can add zero-padding:

1 0 3 0 2

0 3 4 0 2

1 0 2 0 1

8 12 0 1 0

0 6 3 2 0

Input (1x5x5) 0 0 0 0 0 0 0

0 1 0 3 0 2 0

0 0 3 4 0 2 0

0 1 0 2 0 1 0

0 8 12 0 1 0 0

0 0 6 3 2 0 0

0 0 0 0 0 0 0

Zero-padded input (1x7x7)

Zero-padding = 1

If we use a 3x3 filter with a stride of 1 on the padded input, we get a 5x5 output

 same size as input→

Convolutional Neural Networks
Convolution layer summary

The convolution layer:

▪ Accepts a volume of size

▪ Requires four hyper-parameters:

• Number of filters

• Spatial extent of filters

• Stride

• Amount of zero padding

▪ Produces of a volume of size where:

•

•

•

Cin × H1 × W1

K
F

S
P

Cout × H2 × W2

Cout = K
H2 = (H1 − F + 2P)/S + 1
W2 = (W1 − F + 2P)/S + 1

Convolutional Neural Networks
Convolution layer summary

Note:

There are weights per filter,

for a total of weights

and biases per layer

F ⋅ F ⋅ Cin
(F ⋅ F ⋅ Cin) ⋅ K

K

The convolution layer:

▪ Accepts a volume of size

▪ Requires four hyper-parameters:

• Number of filters

• Spatial extent of filters

• Stride

• Amount of zero (repetition) padding

▪ Produces of a volume of size where:

•

•

•

Cin × H1 × W1

K
F

S
P

Cout × H2 × W2

Cout = K
H2 = (H1 − F + 2P)/S + 1
W2 = (W1 − F + 2P)/S + 1

Convolutional neural net

From: Machine Learning for Engineers book

Usually the architecture is fixed for a given problem (object classification) based on trial and error
examples: LeNet-5, LeCun et al. ,1998, AlexNet Krizhevsky et al., 2012, GoogLeNet (Inception v1), etc.

It can be applied to transfer learning to a new problem

Python exercises this week

▪ You will apply CNN to two datasets
• Dataset 1: from last week, digit recognition
• Dataset 2: satellite images classification (bonus)

Summary

Neural networks: nonlinear function approximations (predictors)
Structure: compositions of linear functions and nonlinear activation function ->

Strong function approximation property
Gradient computation

Convolutional neural networks: can help keeping spatial/temporal structure
Image or audio processing

Disadvantages:
Highly non-convex loss functions
Energy and time for training
Interpretability

Additional reading (optional): transfer learning

Train network for a task
Example: image classification
Requires large number of training data, and training resources

Modify the trained network for a different task (transfer learning)
Why? Can address limited data and time/resources for training

Case study 6.5 from Machine Learning for Engineers book: “Finding volcanos on
Venus with pre-fit models”

68Introduction Logistic regression Linear regression

KNN

Clustering

Neural networks

Convolutional neural
networks

Naive Bayes

Decision-trees Dimensionality reduction

Reinforcement learning AI ethics

